18,125 research outputs found

    The Validation of Computer-based Models in Engineering: Some Lessons from Computing Science

    Get PDF
    Questions of the quality of computer-based models and the formal processes of model testing, involving internal verification and external validation, are usually given only passing attention in engineering reports and in technical publications. However, such models frequently provide a basis for analysis methods, design calculations or real-time decision-making in complex engineering systems. This paper reviews techniques used for external validation of computer-based models and contrasts the somewhat casual approach which is usually adopted in this field with the more formal approaches to software testing and documentation recommended for large software projects. Both activities require intimate knowledge of the intended application, a systematic approach and considerable expertise and ingenuity in the design of tests. It is concluded that engineering degree courses dealing with modelling techniques and computer simulation should put more emphasis on model limitations, testing and validation

    Comparison of nonlinear dynamic inversion and inverse simulation

    Get PDF
    No abstract available

    Mathematical modelling of ethanol metabolism in normal subjects and chronic alcohol misusers

    Get PDF
    The time course of ethanol disappearance from the blood has been examined in normal males and females and in alcohol misusers. Blood alcohol estimations were made over a period of 3 hr, following an oral dose of ethanol (0.8 g/kg body weight) administered in the form of whisky. Attempts were made to fit the data to zero order, first order and mixed zero + first order kinetics. In the majority (75%) of normal females the blood ethanol concentration was still increasing at 30 min. This was only seen in 50% of normal males and in 50% of non-dependent alcohol misusers, but not in dependent alcohol misusers. In all of the normal females the disappearance of ethanol could be adequately described by zero order kinetics. However, in the normal male group only 20% could be described by zero order kinetics, 10% fitted first order kinetics and the remainder required a mixed model of zero + first order. The rate constant for the zero order component of the control male group was identical to zero order rate constant obtained for the female control group. In the female alcohol misuser group, 40% of the curves could not be described by zero order kinetics and fitted best to a mixed model. The zero order component of the entire group was significantly increased (by 35%) compared to that obtained for the female control group. In the male dependent and non-dependent alcohol misuser groups, all blood alcohol concentration curves fitted best to mixed zero and first order kinetics. However, no significant differences were noted in the values of the kinetic parameters when compared with the male control group. It is suggested that the zero order component of the blood alcohol concentration curves is due to the action of liver alcohol dehydrogenase and the first order component represents redistribution to the tissues. The presence or absence of a first order component is attributed to differences in absorption rates from the gut

    Kaon Photoproduction and the Λ\Lambda Decay Parameter α−\alpha_-

    Get PDF
    The weak decay parameter α−\alpha_- of the Λ\Lambda is an important quantity for the extraction of polarization observables in various experiments. Moreover, in combination with α+\alpha_+ from Λˉ\bar\Lambda decay it provides a measure for matter-antimatter asymmetry. The weak decay parameter also affects the decay parameters of the Ξ\Xi and Ω\Omega baryons and, in general, any quantity in which the polarization of the Λ\Lambda is relevant. The recently reported value by the BESIII collaboration of 0.750(9)(4)0.750(9)(4) is significantly larger than the previous PDG value of 0.642(13)0.642(13) that had been accepted and used for over 40 years. In this work we make an independent estimate of α−\alpha_-, using an extensive set of polarization data measured in kaon photoproduction in the baryon resonance region and constraints set by spin algebra. The obtained value is 0.721(6)(5). The result is corroborated by multiple statistical tests as well as a modern phenomenological model, showing that our new value yields the best description of the data in question. Our analysis supports the new BESIII finding that α−\alpha_- is significantly larger than the previous PDG value. Any experimental quantity relying on the value of α−\alpha_- should therefore be re-considered.Comment: 6 pages, 1 figure

    Mathematical and computer modeling of electro-optic systems using a generic modeling approach

    Get PDF
    The conventional approach to modelling electro-optic sensor systems is to develop separate models for individual systems or classes of system, depending on the detector technology employed in the sensor and the application. However, this ignores commonality in design and in components of these systems. A generic approach is presented for modelling a variety of sensor systems operating in the infrared waveband that also allows systems to be modelled with different levels of detail and at different stages of the product lifecycle. The provision of different model types (parametric and image-flow descriptions) within the generic framework can allow valuable insights to be gained

    The effects of Chern-Simons gravity on bodies orbiting the Earth

    Get PDF
    One of the possible low-energy consequences of string theory is the addition of a Chern-Simons term to the standard Einstein-Hilbert action of general relativity. It can be argued that the quintessence field should couple to this Chern-Simons term, and if so, it drives in the linearized theory a parity-violating interaction between the gravito-electric and gravitomagnetic fields. In this paper, the linearized spacetime for Chern-Simons gravity around a massive spinning body is found to include new modifications to the gravitomagnetic field that have not appeared in previous work. The orbits of test bodies and the precession of gyroscopes in this spacetime are calculated, leading to new constraints on the Chern-Simons parameter space due to current satellite experiments.Comment: 9 pages, 2 figures; minor corrections made; to appear in PR

    Sensitivity-analysis method for inverse simulation application

    Get PDF
    An important criticism of traditional methods of inverse simulation that are based on the Newton–Raphson algorithm is that they suffer from numerical problems. In this paper these problems are discussed and a new method based on sensitivity-analysis theory is developed and evaluated. The Jacobian matrix may be calculated by solving a sensitivity equation and this has advantages over the approximation methods that are usually applied when the derivatives of output variables with respect to inputs cannot be found analytically. The methodology also overcomes problems of input-output redundancy that arise in the traditional approaches to inverse simulation. The sensitivity- analysis approach makes full use of information within the time interval over which key quantities are compared, such as the difference between calculated values and the given ideal maneuver after each integration step. Applications to nonlinear HS125 aircraft and Lynx helicopter models show that, for this sensitivity-analysis method, more stable and accurate results are obtained than from use of the traditional Newton–Raphson approach

    Fluctuations and Correlations in Lattice Models for Predator-Prey Interaction

    Full text link
    Including spatial structure and stochastic noise invalidates the classical Lotka-Volterra picture of stable regular population cycles emerging in models for predator-prey interactions. Growth-limiting terms for the prey induce a continuous extinction threshold for the predator population whose critical properties are in the directed percolation universality class. Here, we discuss the robustness of this scenario by considering an ecologically inspired stochastic lattice predator-prey model variant where the predation process includes next-nearest-neighbor interactions. We find that the corresponding stochastic model reproduces the above scenario in dimensions 1< d \leq 4, in contrast with mean-field theory which predicts a first-order phase transition. However, the mean-field features are recovered upon allowing for nearest-neighbor particle exchange processes, provided these are sufficiently fast.Comment: 5 pages, 4 figures, 2-column revtex4 format. Emphasis on the lattice predator-prey model with next-nearest-neighbor interaction (Rapid Communication in PRE

    Exploring music with a probabilistic projection interface

    Get PDF
    We present the design and evaluation of an in- teractive tool for music exploration, with musi- cal mood and genre inferred directly from tracks. It uses probabilistic representations of multivari- able predictions of subjective characteristics of the music to give users subtle, nuanced visuali- sations of the 2D map. These explicitly repre- sent the uncertainty and overlap among features and support music exploration and casual playlist generation. A longitudinal trial in users’ homes showed that probabilistic highlighting of subjec- tive features led to more focused exploration in mouse activity logs, and 6 of 8 users preferred the probabilistic highlighting
    • 

    corecore